

Benefits of Minimally Invasive Spinal Surgery (MISS).

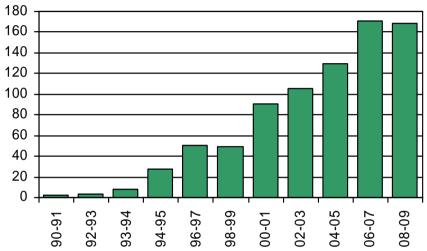
G. Saló, PhD, MD.

Senior Consultant Spine Unit. Hospital del Mar. Barcelona.

Ass. Prof. Universitat Autònoma de Barcelona.

Introduction

- MISS has become increasingly more popular.
- Same surgery through less invasive approaches.
- Same or better outcomes (?)
- Advantages
 - Less muscular aggression.
 - Minor bleeding.
 - Less postoperative pain.
 - Shorter postoperative recovery and hospital stay.
 - Lower morbidity.
 - Smaller scars.
- Disadvantages:
 - It is a technically demanding surgery: steep learning curve.
 - Requires recognition of anatomy with fewer landmarks.
 - Hand-eye coordination: Lack of tactile feedback.
 - Increases of Cost of procedures owing to tecnification.


Introduction

PubMed Search

- 1. Minimally Invasive: 25,535 citations.
- 2. Minimally Invasive + Spine: 1,230 citations.
- 3. Limit to the clinical trials: 134 citations

"Minimally Invasive + Spine Surgery"



MISS Instruments.

1. Retractor Systems:

- Retract surrounding structures on the 3planes. Fixed or expandable diameter.
- Avoid injuries to adjacent structures.
- Fixed on the surgical table
- Different sizes: Not stand higher than the skin level in order to avoid interference with surgeon's activities.
- Light incorporated in the retractor.
- Surface coated in black.

MISS Instruments.

- 1. Instruments for working within the canal and the disc space:
- Bayonet-shaped configuration.
- Great length, with long handles and springs.
- Surface coated in black matt.

MISS Procedures

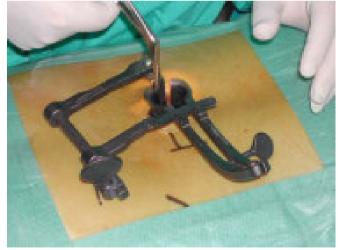
EFORT IS AND CONTROL OF THE PROPERTY OF THE PR

- Percutaneus procedures:
 - 1. Vertebroplasty.
 - 2. Kyphoplasty.
 - 3. Radiofrequency.
 - 4.IDET, Nucleoplasty.
 - Facet blocks / epidural injections
- Endoscopic procedures.
 - 1. Video-Assisted thoracoscopy.
 - 2. Laparoscopy
- Minimally Open Procedures

MISS Procedures

- 1. Lumbar microdiscectomy.
- 2. Lumbar microdecompression
- 3. MIS Lumbar fusion.
 - Percutaneus instrumentation.
 - TLIF MIS.
- 4. Anterior thoraco-lumbar procedures.
 - Video-Assisted thoracoscopy.
 - Laparoscopy
- 5. MIS Cervical fusion
- 6. Cervical microdecompression.

Lumbar MIS Discectomy


EFORT

- 1. Microdiscectomy.
- 2. Endoscopic.
- 3. Minimally open.

Lumbar Discectomy

A Prospective, Randomized Study Comparing the Results of Open Discectomy with Those of Video-Assisted Arthroscopic Microdiscectomy**

BY FRANK C. HERMANTIN, M.D.J. TODO PETERS, M.D.J. LOUIS QUARTARABO, M.D.A. AND FARVIZ KAMBIN, M.D.A., PHILADELPHIA, PENNSYLVANIA, Journal of Bone and John Surgery, Jul 1999, 81, 7; no. 948.

- Prospective work
- Comparing 30 patients MISS vs. 30 patients OPEN.
- 1 level HNP with radiculopathy.
- At 2-year F/U

TABLE II POSTOPULATIVE ENDINGS

	Group 1: Laminotomy and Discretomy (N = 30)	Group 2: Arthroscopic Microdiscoctorry (N = 30)
Mean age (yex)	40	39
Duration of disability (days)	49	27
Mean pain score* (protes)	1.9	1.2
Mean score for frequency of postop, use of narrotics [§] (points)	2	1
No. of patients who were "very satisfied" with operative result	20 (67%)	22 (73%)

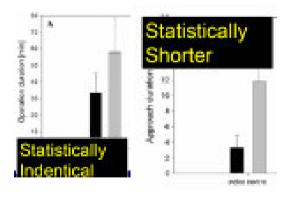
^{*}On a scale of 0 to 10 points. *On a scale of 1 to 5 points.

Analgesics (time): OPEN 25 days MIS 7 days
Time lost from wok: OPEN 6 wks MIS 4 wks

1. Conclusion:

- 1. Equal clinical outcome.
- 2. Less analgesic intake in MIS.
- Quicker return to work in MIS.

Lumbar Discectomy


De Spine J (2005) 31-993, 3000. DOS 30-J-0076-8068-008-006-2

ORIGINAL ARTICLE

Comparison of a minimally invasive procedure versus standard microscopic discotomy: a prospective randomised controlled clinical trial

Jürg Franke : R. Greiser-Perth : H. Bechm : K. Mahifiski - H. Grasshell - V. Allam - F. Avisans

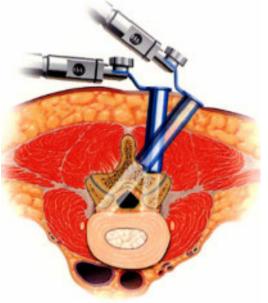
- Randomised clinical Trial
- 50 patients. compares 25 open vs 25 MIS

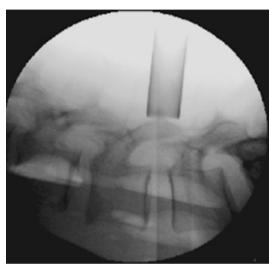
Eur Spins J. (2009) 18 (Suppl. Sci.)089-5069 DOC 18, 1007-60508-609-609-17-6

DESCRIPTION OF THE PROPERTY OF

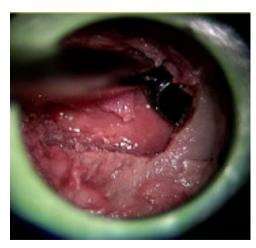
Microdiscectomy compared with standard discectomy: an old problem revisited with new outcome measures within the framework of a spine surgical registry

F. Porchet - V. Bartames - F. S. Kleinstock -F. Lattig - D. Jessemsek - D. Geob - A. F. Mannion


- Prospective Non-randomised clinical Trial
- 2. 225 microdiscectomy Vs 36 standard discectomy
- Standard discectomy group: significantly greater blood-loss than the microdiscectomy (P>0.05).
- The use of the microscope did not lengthen the duration of the operation.

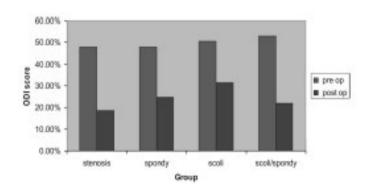

No differences in clinical outcomes

Lumbar Decompression



- Midline decompression
- 2. Unilateral foraminal decompression
- 3. Bilateral foraminal decompression.

Lumbar Decompression



SPDR Volume St. Number 19, pp EWI-EWI 02000, Lippincut Williams & Wilkins

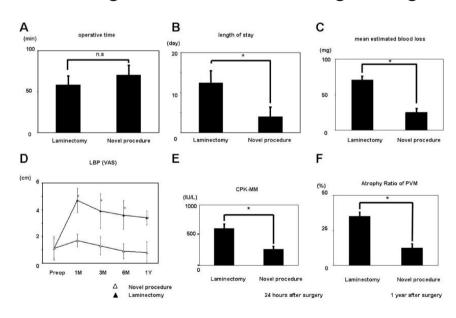
Success and Failure of Minimally Invasive Decompression for Focal Lumbar Spinal Stenosis in Patients With and Without Deformity

Michael C. Kelleher, FRCS(SM), MD, Marcus Timlin, MCh, FRCS (Tr&Orth), Oma Persaud, MSc, and Yoga Raja Rampersaud, MD, FRCS

- Observational cohort study. Retrospective. Level IV evidence.
- 74 patients MIS laminoplasty. 5 year follow-up.
- 1-2 level stenosis, single surgeon.

- Conclusions: MIS decompression alone is an effective procedure.
- 2. Patients with scoliosis have a high revision rate.
- 3. Limitations: observational.

Lumbar Decompression

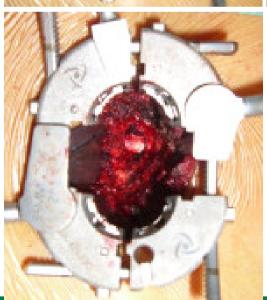


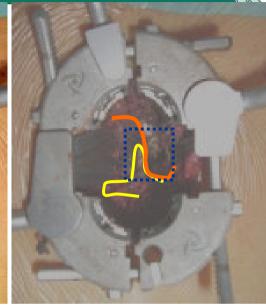
Postoperative outcome after modified unilateral-approach microendoscopic midline decompression for degenerative spinal stenosis Clinical article

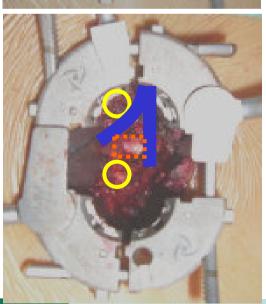
Mitsuru Yagi, M.D., Ph.D., Eijiro Okada, M.D., Ken Ninomiya, M.D., Ph.D., and Michiya Kihara, M.D., Ph.D.

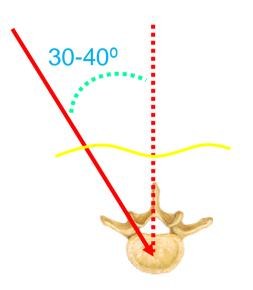
J Neurosurg Spine 2009, vol 10(4), 293-99

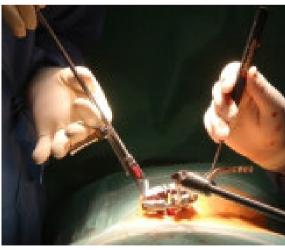
- Prospective. Level II evidence.
- 41 patients: comparing 20 MIS decompression vs 21 open laminectomy.
- Single level stenosis, single surgeon.




- Conclusions: MIS superior in terms of VAS at 1 year, LOS, EBL and muscle damage
- 2. Limitations: small sample, single surgeon.







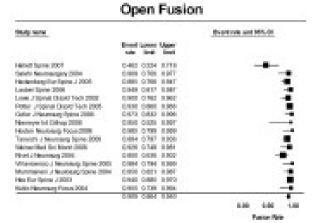
MISS vs OPEN TLIF

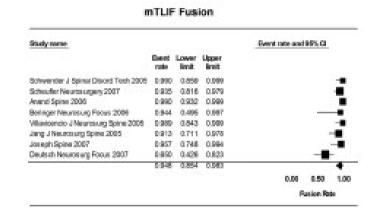
Author / Year	Patients Op/MIS	Study design	Blood loss Open/MIS	Hospital stay Open/MIS	Operative duration Open /MIS	F-up Mon	Clinical Outcomes	Complicat ions Open/MIS
Villavicencio et al, 2010	63/76	Retrospective	366ml/163ml	4.2 d / 3 d	214 m / 222 m	37.5	No diferences	1.6% / 10.5%
Peng et al, 2009	29/29	Prospective	681ml/150ml	6.7 d / 4d	170 m / 216 m	24	No diferences	13.5% / 6.9%
Schizas et al, 2009	18/18	Prospective	961ml/456ml	8.2 d / 6.1 d	5.2 h / 5.8 h	24	No diferences	2 cases / 6 cases
Wang et al, 2010	42/43	Prospective	673ml/264ml	14.6 d/10.6d	145 m / 156 m	26.3	No diferences	4 cases / 5 cases
Shunwu et al 2010	30/32	Prospective	517ml/399ml	12.5d / 9.3 d	142 m / 159 m	24 - 42	VAS&ODI Beter MIS	5 cases / 6 cases
Dhall et al, 2008	21/21	Retrospective	505ml/194ml	5.5 d / 3 d	237 m / 199 m	24 - 34	No diferences	2 cases / 5 cases
Isaacs et al, 2005	20/24	Retrospective	1147ml/226 ml	5.1 d / 3.4 d	4.6 h / 5 h		Not studied	6 cases / 0 cases

223 / 243

less shorter longer blood hospitali- operativ loss zation e time

NO clinical diferen more technical complicatio ns.

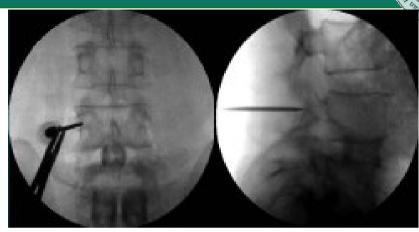

SPINE Volume XX, Number XX, pp 000-000 ©2010, Lippincott Williams & Wilkins


Minimal Access Versus Open Transforaminal Lumbar Interbody Fusion

Meta-Analysis of Fusion Rates

Ray H. Wu, BS, Justin F. Fraser, MD, and Roger Härtl, MD

- Quantitative meta-analysis of fusion rates, Level I.
- 716 OPEN TLIF vs. 312 MIS TLIF. F-Up 2 -3.5 years.


1. Concusions:

- 1. Similar range of fusion in both groups.
- 2. Similar complications rates.
- 2. Limitations: heterogeneus sample.

Lumbar Fusion: Pedicle Instrumentation.

- 1. Pedicle percutaneus instrumentation.
 - Fluoroscopy guidance.
 - C-Arm navigation
 - O-Arm navigation.

Lumbar Fusion: Pedicle Instrumentation.

EFORT SSOOTH

Eur Spino J (2007) 16:613-617 DOI 10:1000/s00596-006-021-4

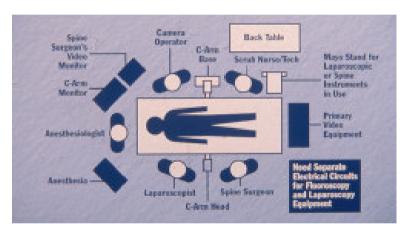
ORIGINAL ARTICLE

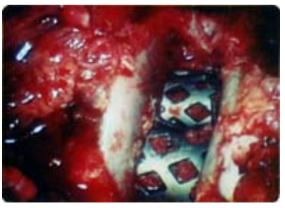
Computer tomography assessment of pedicle screw insertion in percutaneous posterior transpedicular stabilization

Constantin Schizus - Jacky Michel : Victor Kosmopoulos - Nicolas Theumann

60 percutaneous screws in 15 consecutive patients Conclusions:

- The overall rate of screw perforation was 23%.
- Screw misplacement was comparable to average rates reported in open techniques


Perez-Cruet M et al. Early results of a prospective, multicenter, randomized clinical trial evaluating minimally invasive vs. open pedicle screw implantation outcomes. TSJ 2005; 5:S131


Conclusions:

- Longer operative time (358 m vs 297m)
- Decreased blood loss (256 cc vs 519 cc)
- Shorter hospital stay (3 d vs. 4 d)
- Equal Clinical results

Lumbar fusion: Laparoscopy.

- Anterior Lumbar Interbody Fusion.
 - Extraperitoneal
 - Transperitoneal

Laparoscopy.

Laparoscopic Fusion of the Lumbar Spine: Minimally Invasive Spine Surgery: A Prospective Multicenter Study Evaluating Open and Laparoscopic Lumbar Fusion.

Regan, John; Yuan, Hansen; McAfee, Paul

Spine. 24(4):402-411, February 15, 1999.

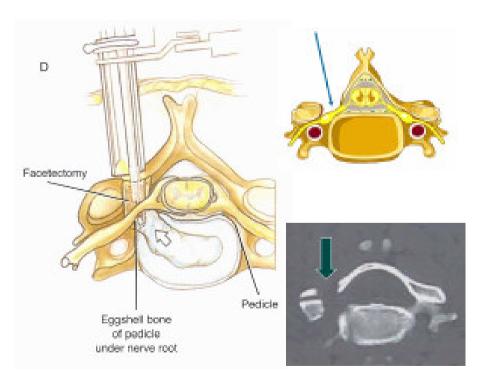
- Prospective, comparative: Level III.
- 240 consecutive laparoscopic vs 591 open ALIF.

	BAK Open		BAK Laparo- scopic			
	N	Mean	N	Mean	P*	
Blood loss L4-L5 (mL)	101	232.3	36	134.4	0.023	
Blood loss L5-S1 (mL)	192	193.9	179	143.0	NS	
Mean blood loss (mL)	305	207.2	215	141.7	0.005	
Surgery time L4-L5 (min)	101	147.9	36	223.6	< 0.001	
Surgery time L5-S1 (min)	192	136.8	179	196.8	< 0.001	
Mean surgery time (min)	305	141.9	215	201.2	< 0.001	
Length of stay L4-L5 (days)	101	4.1	36	3.2	0.003	
Length of stay L5-S1 (days)	192	3.8	179	3.4	NS	
Mean length of stay (days)	305	4.0	215	3.3	0.005	

Results:

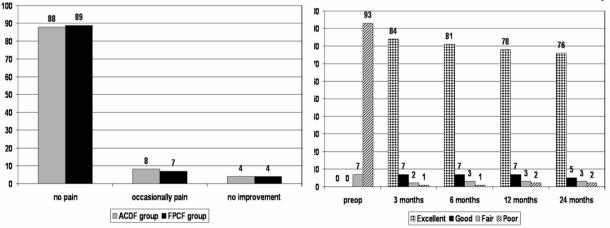
- No differences in results, revison and complication rate.
- Shorter stay and less blood loss.
- More operative time was spent.

	BAK Open (N = 305)	%	BAK LAP (N = 215)	%	$\rho*$
Revision of implant	3	1.0	0	0.0	NS
Removal of implant	2	0.7	2	0.9	NS
Reoperation					
Bone graft Augmentation	1	0.3	0	0.0	NS
Early Decompression, discectomy, or laminectomy	0	0.0	7	3.2	0.002
Additional Stabilization	1	0.3	1	0.5	NS
Total	7	2.3	10	4.7	NS
* Fisher exact. NS = not significant.					


Cervical decompression.

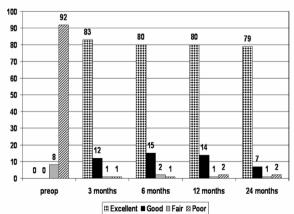
- 1. Posterior cervical microforaminotomy.
- 2. Posterior Endoscopic foraminotomy.

Cervical decompression.


SPINE Volume 33, Number 9, pp 940-948 ©2008, Lippincott Williams & Wilkins

Full-Endoscopic Cervical Posterior Foraminotomy for the Operation of Lateral Disc Herniations Using 5.9-mm Endoscopes

A Prospective, Randomized, Controlled Study


Sebastian Ruetten, MD, PhD,* Martin Komp, MD, PhD,* Harry Merk, MD,† and Georgios Godolias, MD‡

- 175 patients.
- Compared 86 anterior decompression vs 89 endoscopic posterior cervical foraminotomy.
- F-UP: 2 years.

Results:

- No differences in results, revison and complication rate.
- Reduced soft tissue traumatization.
- Less operative time.

Conclusions.

1. Lumbar microdiscectomy:

- Level I-IV evidence.
- Less narcotic use.
- More radiation exposure.
- No long term difference.

2. Lumbar microdecompression:

- Level II-IV evidence
- Superior reported outcomes.
- More research is necessary to define: adverse event profile, learning curve and optimal approach.

Conclusions.

3. Lumbar MISS fusion:

- No Level I evidence.
- Less blood loss, shorter hospital stay, less postoperative pain
- Level II evidence reports of comparable outcomes for MIS TLIF vs ALIF + pedicular screws.
- More research is necessary to define: optimal retractor, costs, graft substrate
- More radiation exposure.

4. Cervical microdecompresion:

- Level I-IV evidence
- No difference between MIS vs OPEN
- Both are reasonable.

